yhkn.net
当前位置:首页 >> 神经网络 >>

神经网络

对非线性时变系统的逼近能力上讲,两者在经过各自训练步数(Elman比BP步数少)达到最优时,预测误差都差不多,对动态跟踪预测能力基本一样强。但是对与时延(大滞后)系统,内时延Elman网络比外时延BP网络的优势体现在:结构简单(不用外加时延...

优点: (1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。 自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将...

神经网络中epoch与iteration是不相等的 batchsize:中文翻译为批大小(批尺寸)。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练; iteration:中文翻译为迭代,1个iteration等于使用batchsize个样本训练一次;一个...

作者:杨延生 来源:知乎 "深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。 新的网络结构中最著名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了“局部感受野”和“权...

SVM有如下主要几个特点: (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3)支持向量是SVM的训练结果,在SVM分类决策中起...

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出...

用单片机开发神经网络应用主要考虑三个方向: 1)网络本身,神网本质上是一组矩阵,矩阵在单片机中的表现可以通过数组来实现; 2)输入输出,神网的应用就是把输入阵列与网络本身的矩阵点乘叉乘后算术求和,产生输出矩阵,把输入输出的算法做到...

用样本去训练一个BP网络,然后用新的样本作为输入,再通过这个已经训练好的BP网络,得到的数据就是仿真的结果,这就是BP网络仿真。我们训练一个BP网络就好像是在训练一个神经系统,然后用这个已经具备分析能力的神经系统去分析事情,这就是为什...

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。 例如预报天气: 温度 湿度 气压等作为输入 天气情况作为...

小波分析 (wavelet Analysis) 是 20 世纪 80 年代中期发展起来的一门数学理论和方法 ,由法国科学家 Grossman 和 Morlet 在进行地震信号分析时提出的 , 随后迅速发展。 1985 年 Meyer 在一维情形下证明了小波函数的存在性 , 并在理论上作了深入研...

网站首页 | 网站地图
All rights reserved Powered by www.yhkn.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com