yhkn.net
当前位置:首页 >> 神经网络 >>

神经网络

优点: (1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。 自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将...

作者:杨延生 来源:知乎 "深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。 新的网络结构中最著名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了“局部感受野”和“权...

人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应...

很显然。。。这里J求得的是每个x经过模型对应输出(你的模型答案)与实际对应y(标准答案)的欧式距离 1/2是一个系数,是为了求导后可以约掉。 那么就很显然,J就表达了你这个模型的优劣度,J越小你的模型越接近你的这组数据应该得到的结果 所以...

神经网络中epoch与iteration是不相等的 batchsize:中文翻译为批大小(批尺寸)。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练; iteration:中文翻译为迭代,1个iteration等于使用batchsize个样本训练一次;一个...

SVM有如下主要几个特点: (1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射; (2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心; (3)支持向量是SVM的训练结果,在SVM分类决策中起...

对于前向无反馈神经网络而言,神经网络的鲁棒性是指当输入信息或神经网络发生有限摄动时,神经网络仍能保持正常的输入—输出关系的特性;对于反馈神经网络而言,神经网络的鲁棒性是指当输入信息或神经网络发生有限摄动时,神经网络仍能保持稳定的...

这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下: 而交叉熵则是为了防止网络在训练后期迟缓而提出的一种损失...

Back Propagation BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责...

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。一、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有...

网站首页 | 网站地图
All rights reserved Powered by www.yhkn.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com