yhkn.net
当前位置:首页 >> 神经网络算法 >>

神经网络算法

神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。 蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没...

遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有复制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的设计。 模糊数学是研究现实生活中一类模糊现象的数学。简单地说就是像好与坏怎样精确的描述,...

Introduction -------------------------------------------------------------------------------- 神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能...

判别分析是半监督分类,就是判别函数求解的时候按照已知类别样本计算,但是对于未知类别样本应用判别函数时不做任何监督;而决策树和神经网络属于有监督分类,从分类准则建立,到准则的部署全程控制。而像聚类分析属于无监督分类,从分类规则开始就没...

若果对你有帮助,请点赞。 神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先...

人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反...

最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。 前者应该是基于遗传算法进行网络权值的学习,而后者大都是采用反向传播(BP)算法进行权值学习,而这两种算法差异很大。建议你分别了解: 1)遗传算法 2)反向传播算法

人工神经网络算法 “人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一...

RPROP神经网络算法原理 1993年德国Martin Riedmiller和Heinrich Braun在他们的论文“The RPROP Algorithm”中提出了这种方法。 RPROP算法的基本原理为:首先为各权重变化赋一个初始值,设定权重变化加速因子与减速因子,在网络前馈迭代中当连续误...

这四个都属于人工智能算法的范畴。其中BP算法、BP神经网络和神经网络 属于神经网络这个大类。遗传算法为进化算法这个大类。 神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,...

网站首页 | 网站地图
All rights reserved Powered by www.yhkn.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com